Degradation of Three Aromatic Dyes by White Rot Fungi and the Production of Ligninolytic Enzymes

نویسندگان

  • Chandana Jayasinghe
  • Ahmed Imtiaj
  • Geon Woo Lee
  • Kyung Hoan Im
  • Hyun Hur
  • Min Woong Lee
  • Hee-Sun Yang
  • Tae-Soo Lee
چکیده

This study was conducted to evaluate the degradation of aromatic dyes and the production of ligninolytic enzymes by 10 white rot fungi. The results of this study revealed that Pycnoporus cinnabarinus, Pleurotus pulmonarius, Ganoderma lucidum, Trametes suaveolens, Stereum ostrea and Fomes fomentarius have the ability to efficiently degrade congo red on solid media. However, malachite green inhibited the mycelial growth of these organisms. Therefore, they did not effectively decolorize malachite green on solid media. However, P. cinnabarinus and P. pulmonarius were able to effectively decolorize malachite green on solid media. T. suaveolens and F. rosea decolorized methylene blue more effectively than any of the other fungi evaluated in this study. In liquid culture, G. lucidum, P. cinnabarinus, Naematoloma fasciculare and Pycnoporus coccineus were found to have a greater ability to decolorize congo red. In addition, P. cinnabarinus, G. lucidum and T. suaveolens decolorized methylene blue in liquid media more effectively than any of the other organisms evaluated in this study. Only F. fomentarius was able to decolorize malachite green in liquid media, and its ability to do so was limited. To investigate the production of ligninolytic enzymes in media containing aromatic compounds, fungi were cultured in naphthalene supplemented liquid media. P. coccineus, Coriolus versicolor and P. cinnabarinus were found to produce a large amount of laccase when grown in medium that contained napthalene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of the Ligninolytic System of White-Rot and Litter-Decomposing Fungi in the Degradation of Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are natural and anthropogenic aromatic hydrocarbons with two or more fused benzene rings. Because of their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, PAHs are a significant environmental concern. Ligninolytic fungi, such as Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus, have the ca...

متن کامل

Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes

BACKGROUND Total three Pleurotus species (P. ostreatus, P. sapidus, P. florida) was compared for ligninolytic enzyme production grown with Coralene Golden Yellow, Coralene Navy Blue and Coralene Dark Red azo dyes in liquid medium under shaking condition. RESULTS The biodegradation competency varied from species to species and it was found that P. ostreatus, P. sapidus and P. florida to 20 ppm...

متن کامل

Study of the white-rot fungal degradation of selected phthalocyanine dyes by capillary electrophoresis and liquid chromatography

The phthalocyanine dyes, Remazol Turquoise Blue G133, Everzol Turquoise Blue and Heligon Blue S4 are found to be biosorbed by Phanerochaete chrysosporium (white-rot fungi) and also metabolised by its ligninolytic extracellular enzymes resulting in dye decolourisation, formation of free copper ions and organic metabolites with ultimate extensive phthalocyanine ring breakdown. It is believed that...

متن کامل

Enhanced Production of Ligninolytic Enzymes by a Mushroom Stereum ostrea

The white rot fungi Stereum ostrea displayed a wide diversity in their response to supplemented inducers, surfactants, and copper sulphate in solid state fermentation. Among the inducers tested, 0.02% veratryl alcohol increased the ligninolytic enzyme production to a significant extent. The addition of copper sulphate at 300 μM concentration has a positive effect on laccase production increasin...

متن کامل

Biological Pretreatment of Lignocelluloses with White-rot Fungi and Its Applications: a Review

Lignocellulosic carbohydrates, i.e. cellulose and hemicellulose, have abundant potential as feedstock for production of biofuels and chemicals. However, these carbohydrates are generally infiltrated by lignin. Breakdown of the lignin barrier will alter lignocelluloses structures and make the carbohydrates accessible for more efficient bioconversion. White-rot fungi produce ligninolytic enzymes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008